

Black Hole Portal into Hidden Valleys

Sergei Dubovsky CCPP, NYU

String Lanscape:

Plenitude (~ 10⁵⁰⁰ ') of vacua

Ultimate Unification of

Fundamental Physics and Geography

In both cases no reasons to apply Occam's razor

Expect to see more structures of the type we already saw:

Gauge sectors

Theory: Abundantly come from stacks of D-branes wrapping cycles in the compactification manifold

Observations: SU(3)xSU(2)xU(1)

Axions

Theory: Abundantly come from zero modes of higher-dimensional gauge fields in the presence of cycles

Observations: Strong CP problem provides a tantalizing hint

Landscape geography implies new search strategies for new physics:

New physics can be (exponentially) light:

Axions are gauge fields in disguise. Not massless due to non-perturbative (Aharonov-Bohm) effect.

And very weakly (gravitationally) coupled to us

Consequence of geographic separation

Theorist's detector for light axions:

SD, Arvanitaki, Dimopoulos, Kaloper, March-Russel SD, Arvanitaki

LMC X-1

$$10M_{\odot} \,, \ a/R_g \simeq 0.91$$

$$m_a \gtrsim 2 \cdot 10^{-11} \ eV$$

for the QCD axion translates into

$$f_a \lesssim 3 \cdot 10^{17} \ GeV$$

Black Hole Superradiance

Penrose Process

Penrose; Zeldovich; Misner; Starobinsky

Black Hole Superradiance

Penrose Process

Penrose; Zeldovich; Misner; Starobinsky

Extracts angular momentum and mass from a spinning black hole

Black Hole Bomb

Press & Teukolsky

Photons reflected back and forth from the black hole and through the ergoregion

Black Hole Bomb

Press & Teukolsky

Photons reflected back and forth from the black hole and through the ergoregion

Superradiance for a massive boson

Penrose Process

Damour et al; Gaina et al.; Detweiler; Zouros & Eardley;

Particle Compton Wavelength comparable to the size of the Black Hole

Superradiance for a massive boson

Damour et al; Gaina et al.; Detweiler; Zouros & Eardley;

Particle Compton Wavelength comparable to the size of the Black Hole

Gravitational Atom in the Sky

Away from the Black Hole: Newtonian Potential

The gravitational Hydrogen Atom

$$\alpha_{EM} = \frac{e^2}{4\pi} \longrightarrow \alpha = G_{\rm N} M_{\rm BH} \mu_a = R_g \mu_a$$

$$E_{\text{binding}} = -\frac{\alpha_{EM}^2 m_e}{2n^2} \longrightarrow E_{\text{binding}} = -\frac{\alpha^2 \mu_a}{2n^2}$$

$$fermions \longrightarrow bosons$$

Occupation number

$$1 \longrightarrow 10^{75}$$

Spin Gap for the QCD Axion

Spin Gap for the QCD Axion

Combined Exclusion plot

Arvanitaki, Baryakhtar, Huang, to appear

Bose Einstein Condensate in a Trap

The effect of attractive self-interactions

$$E_{trap} \sim E_{inter.}$$

http://www.nist.gov/public_affairs/bosenova.htm

The Bosenova

$${\rm Happens~when} \quad \frac{M_{\rm cloud}}{M_{\rm BH}} \sim \frac{f_a^2}{M_{\rm Planck}^2} \frac{l^2}{\alpha^2} \sim 10^{-4}$$

Repeats 10-100 times Wait 10^3 - $10^4 \tau_{sr}$ to stop superradiating

Bose Einstein Condensate in a Trap

The effect of attractive self-interactions

$$E_{trap} \sim E_{inter.}$$

http://www.nist.gov/public_affairs/bosenova.htm

The Bosenova

$${\rm Happens~when} \quad \frac{M_{\rm cloud}}{M_{\rm BH}} \sim \frac{f_a^2}{M_{\rm Planck}^2} \frac{l^2}{\alpha^2} \sim 10^{-4}$$

Repeats 10-100 times Wait 10^3 - $10^4 \tau_{sr}$ to stop superradiating

What about signals, rather then exclusions?

◆Gravitational waves from the cloud. Advanced LIGO has chances to become a discovery machine for the QCD axion.

◆Electromagnetic signals ? The hope is that inside the cloud $\theta_{QCD} \sim 1$. This is a very different QCD!

Electromagnetic Signals: Echoes of Hidden Valleys

Setup: SD, Gorbenko

- Axion, coupled to QCD-like sector.

 At least 3 light quark flavors with close masses.

 Pure glue also may work.
- ◆Some portal, allowing for hidden pions to annihilate into SM. Simplest example: dark photon with kinetic mixing.

Effective action describing axion and mesons:

$$\mathcal{L} = \frac{F_{\pi}^{2}}{4} \operatorname{Tr} \partial U^{\dagger} \partial U + \frac{\Lambda^{3}}{2} \operatorname{Tr} \left(M e^{-i\theta/N} U + M e^{i\theta/N} U^{\dagger} \right)$$

Axion Monodromy

Figure 1: Extrema of the axion potential at N=3 for equal quark masses (left), and for mass ratios 1:1.2:1.4 (right).

Axion Monodromy

Superradiance puts QCD' in an overheated state. Eventually, triggers a local phase transition, latent heat is released in the form of hidden hadrons. They may efficiently annihilate into photons/electrons.

Figure 2: A total energy release as a function of a characteristic temperature of a fireball for different values of parameters α and l. Two red axes on top represent a corresponding black hole mass and time scale for $\alpha = 0.5$, l = 1. For the blue line a black hole mass is 5 times larger than the value on the red axis and a time scale is 5 times longer. For the green line a black hole is 5 times lighter and a time scale is $\sim 5^{1/3}$ times longer.

Conclusions

*New physics does not necessarily mean high energies.

*Opens a window for new experimental and observational probes.